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Abstract. We show that knowing the displacement-to-traction map associated to the equations
of isotropic elastodynamics with residual stress we can determine the lens maps of compressional
and shear waves. We derive several consequences of this for the inverse problem of determining
the residual stress and the Lamé parameters from the displacement-to-traction map.

1. Introduction

Consider an elastic medium which occupies a bounded domain � ⊂ R
3 with

smooth boundary ∂� and exterior normal ν. Displacement is a time-dependent
vector field u(t, ·) on �. Small displacements satisfy, in a source-free medium,
the equations for (linearized) elastodynamics,

ρ ∂2u/∂t2 = ∇ · S with S = R + ∇u R + CE. (1)

Here 0 < ρ ∈ C∞(�) denotes the density, S is the Piola-Kirchhoff stress tensor
which obeys the relation SFT = FST where F = I + ∇u is the deformation
gradient. Divergence and transpose are taken with respect to the Euclidean metric
| · |. See [Gur72, Sect. 16] and [MH83, Sect. 4.2-3]. The elasticity tensor C maps
infinitesimal strain tensors E = (∇u+∇uT )/2 to symmetric stress tensors CE. C
represents the elastic properties of the medium. R(x), the residual stress tensor, is
a symmetric 3 × 3-matrix, C∞ on �. It satisfies ∇ ·R = 0. See [Gur72, Sect. 23],
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[Hog86]. There are no assumptions on the boundary values of R. We call

Pu = −ρ ∂2u/∂t2 + ∇ · (R + ∇u R + CE
)

(2)

the operator for elastodynamics with residual stress. P is isotropic if the elasticity
tensor is as follows,

CE = λ tr(E)I + 2µE with λ, µ ∈ C∞(�), 0 < µ, λ + µ. (3)

λ and µ are the Lamé parameters of the elastic medium.
The initial displacement boundary value problem of elastodynamics is

Pu = 0 in R × �, u = f on R × ∂�, u = 0 initially. (4)

Given a boundary displacement f ∈ E ′(R × ∂�)3 a solution u ∈ D′(R × �)3

is sought. By definition, u = 0 initially means that there exists t0 ∈ R such that
u = 0 in {t < t0}. For existence and uniqueness see the discussion at the beginning
of section 4.

The inverse problem for operators of elastodynamics is to recover as much
as possible of the elasticity tensor C and of the residual stress tensor R from
measurements performed at the space-time boundary R × ∂�. See [ML87],
[Rob97], and [Rac00c] for approaches to residual stress determination.

We deal with an inverse problem for subclasses L(L, ε), L, ε > 0, of operators
for isotropic elastodynamics. By definition, P ∈ L(L, ε) if and only if

λ(x) + 2µ(x), 1/µ(x), 1/ρ(x) ≤ L when x ∈ � (5)

and

|R(x)| ≤ εµ(x) when x ∈ �. (6)

Here |R(x)| = sup|ξ |=1 |R(x)ξ · ξ |. Assumptions like (6) with ε small have been
introduced before to ascertain well-posedness. See, e.g., [Rob97] for the static
case. We will prove the well-posedness of (4) and the existence of microlocal
parametrices if P ∈ L(L, ε), ε > 0 sufficiently small.

The (hyperbolic) displacement-to-traction map

	 : u|R×∂� �→ ν · S|R×∂� (7)

encodes boundary measurements. Here u solves (1) with zero initial data. We say
that a property of an operator for elastodynamics from a given class is determined
by boundary measurements if the property is the same for any two operators in
the class with identical displacement-to-traction maps. It is also of interest to
bound the time of measurement. We say that measurements of duration T > 0
suffice to determine a property if this property is determined by the restricted
displacement-to-traction map, u|[0,T ]×∂� �→ ν · S|[0,T ]×∂�.
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A useful approach to inverse problems consists in using high-frequency waves
u generated by boundary data with singularities. From travel times of singularities
of u recorded at ∂� one then aims to recover the requested properties. The latter
problem is called an inverse kinematic problem. Obviously, an important step is
to prove that travel times are in fact determined by boundary measurements. The
main goal of this paper is provide a result of this kind which is applicable also
when caustics may develop.

We study the propagation of polarization in the sense of Dencker [Den82] for
the initial boundary problem of the operator for isotropic elastodynamics with
residual stress, P . In Proposition 4.1 we show that P is a system of real principal
type if the residual stress R satisfies

µ(x)|ξ |2 + R(x)ξ · ξ > 0 when (x, ξ) ∈ T �(�) \ 0. (8)

If (8) holds then

〈ξ, ξ〉S = (
µ(x)|ξ |2 + R(x)ξ · ξ

)
/ρ(x), (9)

〈ξ, ξ〉P = (
(λ(x) + 2µ(x))|ξ |2 + R(x)ξ · ξ

)
/ρ(x), (10)

are the duals g−1
S/P (x, ξ) = 〈ξ, ξ〉S/P , (x, ξ) ∈ T �(�), of Riemannian metrics gS/P

on �. The characteristic variety of P is the union of the subvarieties τ 2 − 〈ξ, ξ〉S
= 0 and τ 2 − 〈ξ, ξ〉P = 0 which correspond to shear and compressional waves,
respectively.

The lens map or scattering relation S ⊂ (
T �(R × ∂�) \ 0

)2
of a metric

g = (gij ) on � with dual metric g−1 = (gij ) is defined as follows. Consider
bicharacteristic curves, γ : [a, b] → T �(� × R), of the Hamilton function
H(t, x, τ, ξ) = τ 2 − g−1(x, ξ) which satisfy the following: γ (]a, b[) lies in the
interior, γ intersects the boundary non-tangentially at γ (a) and γ (b), and time
increases along γ . Then the the canonical projection from (T �

R×∂�
(R × �) \ 0)2

onto (T �(R×∂�)\0)2 maps the endpoint pair (γ (b), γ (a)) to a point in S . Every
point in S arises in this way. It is well-known that S is a homogeneous canonical
relation on T �(R× ∂�)\0. (See [Gui77] for the concept of a scattering relation.)
S is, in fact, a diffeomorphism between open subsets (of hyperbolic regions) of
T �(R × ∂�) \ 0. We denote by SS (resp. SP ) the lens map of gS (resp. gP ) and
call it the shear (resp. compressional) lens map. The lens maps contain all travel
time data.

Our main result is the following.

Theorem 1.1. Given L > 0 there exists ε > 0 such that in the class L(L, ε) the
shear and the compressional lens maps are determined by boundary measure-
ments.

Note that we are able to distinguish travel times of shear waves from travel
times of compressional waves in boundary measurements. The proof implies, in
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addition, that observations of duration T > 0 suffice to recover all travel times
≤ T . The proof of Theorem 1.1 is based on an analysis of the propagation of singu-
larities for solutions to (4). Only singularities propagating through the interior of
the medium occur. Solutions with singularities propagating in the boundary occur
for traction boundary problems. These Rayleigh waves are not considered here.

Let g be Riemannian metric on �. Denote by D the open subset of ∂� × ∂�

which consists of the pairs (x, y) of boundary points which can be joined by
a geodesic which passes through the interior except for the endpoints x and y

where it intersects ∂� transversally. By definition, the boundary distance func-
tion of (�, g) is the function d : D → [0, ∞[ which assigns to (x, y) ∈ D the
geodesic distance, i.e., the infimum of the lengths of such geodesics. If (�, g)

is strictly convex then D is the complement of the diagonal and d is smooth.
Geodesics of g are projections of bicharacteristic curves of τ 2 − g−1(x, ξ) = 0.
Geodesic distances equal travel times. When d is smooth it is a generating func-
tion of (a subset of) the lens maps S of g, i.e., ((t1, x1, τ, ξ1), (t0, x0, τ, ξ0)) ∈ S
if t1 − t0 = d(x1, x0) and ξj = −τ∂d(x1, x0)/∂xj for j = 0, 1. (See [Car35],
[GS77].) Clearly, S determines d. The boundary distance functions of the metrics
gS and gP are denoted dS and dP , the shear and the compressional boundary dis-
tance functions, respectively. Because of λ + µ > 0 shear waves travel a slower
speed than compressional waves. In particular, dP ≤ dS and the diameters satisfy
diamP (�) ≤ diamS(�). From Theorem 1.1 and the remarks following it we get
a corollary on boundary distance (or travel time) functions.

Corollary 1.2. Given L > 0 there exists ε > 0 such that in the class L(L, ε)

the shear and the compressional boundary distance functions are determined by
boundary measurements. Measurements of duration diamS(�) suffice.

In the case R = 0 the metrics gS and gP are conformal to the Euclidean met-
ric. Mukhometov [Muk82] solved the inverse kinematic problem for conformal
classes of metrics under assumptions which exclude conjugate points. Rachele
[Rac00b] proves Corollary 1.2 for R = 0 in the absence of conjugate points.
That result, together with, e.g., Croke’s theorem [Cro91, Theorem C], imply the
following uniqueness result.

Corollary 1.3. [Rac00b, Theorem 1] In the class of operators of isotropic elasto-
dynamics with vanishing residual stresses, and with (�, gS), (�, gP ) strictly con-
vex, the compressional and shear wave speeds, cP = √

(λ + 2µ)/ρ and cS =√
µ/ρ, are determined by boundary measurements. Measurements of duration

diamS(�) suffice.

If residual stresses do not vanish the metrics become anisotropic. From Cor-
ollary 1.2 and a result of Stefanov-Uhlmann on the anisotropic inverse kinematic
problem [SU98, Theorem 1.1] we deduce the following result.
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Corollary 1.4. There is a C12(�) neighbourhood U of the euclidean metric such
that the following holds. Let P (1) and P (2) be operators of isotropic elastodynam-
ics. Assume 	(1) = 	(2). Assume � strictly convex with respect to the metrics g

(j)

S

andg
(j)

P . Ifg(j)

S , g
(j)

P ∈ U theng
(1)
S = ��

Sg
(2)
S ,g(1)

P = ��
P g

(2)
P with diffeomorphisms

�S, �P : � → � which leave the boundary fixed, i.e., �S(x) = �P (x) = x if
x ∈ ∂�.

In [SU98, Theorem 1.1] an additional flatness assumption at the boundary of
� is made. This assumption is superfluous in view of [LSU01, Theorem 2.1].

Rachele [Rac00c] proves Corollary 1.2 and Corollary 1.4 for a more general
class of operators under additional assumptions which exclude conjugate points.
Rachele’s result also requires the determination [Rac00a] of the coefficients λ, µ,
ρ to infinite order at the boundary, in order to extend the parameters smoothly to
all of R

3. Note that our result allows the presence of conjugate points and does not
require the boundary determination or extension beyond the original manifold.

We prove Theorem 1.1 in section 6. The facts needed about propagation of
singularities and polarizations in non-glancing boundary problems for systems of
real principal type are proved in section 2 for first order systems. These are applied
to second order systems and to elastodynamics in sections 3 and 4, respectively.
In particular, section 4 contains an analysis of the displacement-to-traction map
	 and its pseudo-differential properties.

2. Singularities of first order boundary problems

We summarize some facts from the microlocal theory of boundary problems.
The results are due to Dencker [Den82], Gérard [Gér85], Melrose [Mel81], and
Taylor [Tay75].

Consider half-space R+ × R
n as a manifold with boundary. Denote the nat-

ural coordinates x ≥ 0, y = (y1, . . . , yn), and ξ , η = (η1, . . . , ηn) the dual
coordinates of cotangent space. Let Z ⊂ R+ × R

n open with non-empty bound-
ary Y = Z ∩ {0} × R

n and interior Z◦ = Z ∩ R+ × R
n. D′(Z) denotes the

space of extendible distributions on Z◦. Pseudo-differential operators of order
at most m on Y and on Z acting along Y are written A(y, Dy) ∈ �m(Y ) and
B(x, y, Dy) ∈ �m

t (Z), respectively. Sm = Sm(Y × R
n) and Sm

t = Sm(Z × R
n)

are the corresponding symbol spaces. Elements of �m
t (Z) are called tangential

pseudo-differential operators. Symbols are always assumed polyhomogeneous
(classical). Pseudo-differential operators will always be chosen properly support-
ed. We denote by rY u = u|Y the restriction of u ∈ D′(Z), when defined.

We consider u ∈ D′(Z)
K such that Pu ∈ C∞(Z)K where P is a K × K

system of pseudo-differential operators which are differential with respect to x,
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P =
m∑

j=0

PjD
j
x with Pj = Pj(x, y, Dy) ∈ �

j
t (Z), P0 = IdK . (11)

The boundary wavefront set WFb(u), defined in [Mel81], is a closed subset of the
compressed cotangent bundle T̃ �(Z). If the Pj are differential operators then Pu ∈
C∞(Z)K is a non-characteristic boundary problem and hence u is normally regu-
lar in the sense of Melrose [Mel81, II.9]. Recall from [Mel81] or [Hör85, 18.3] the
following properties of a normally regular distribution u. u ∈ C∞([0, ε[,D′(Rn))

locally near Y . Au is normally regular if A is a tangential pseudo-differential
operator. The boundary wavefront set WFb(u) ⊂ T �(Y ) ∪ T �(Z◦) ⊂ T̃ �(Z).
(y, η) ∈ T �(Y ) \ WFb(u) if and only if Au ∈ C∞(Z) for some operator A =
A(x, y, Dy) ∈ �m

t (Z) which is non-characteristic at (0, y, η). The polarization
set WF(s)

pol(u) is, by definition the intersection of the sets

NA = {
(x, ξ ; w) ∈ T �(Z◦) × C

K ; σ(A)(x, ξ)w = 0
}

where A ∈ �0 runs over all 1 × K systems such that Au ∈ H(s)(Z◦). See
[Den82] and [Gér85] for the precise definition and for results on the propagation
of polarization along Hamilton orbits.

Let P as in (11) with principal symbol p. Following Dencker [Den82, Defini-
tion 3.1] we say that P is of real principal type if, microlocally near a given point,
the characteristic variety is given by q = 0 with a scalar symbol q of real principal
type and if there exists a matrix-valued symbol, p̃ such that p̃p = q IdK . If we
assume P of real principal type then H = Hq is a Hamilton field of the charac-
teristic variety V = q−1(0) of P . A point (y, η) ∈ T �Y \ 0 is called glancing
for P if, with respect to the natural projection from T �

Y Z to T �Z, its preimage in
V ∩ T �

Y Z contains a point where Hx = 0, else (y, η) is called non-glancing for
P . Bicharacteristics intersect the boundary transversally at non-glancing points.

We now specialize to first order systems, m = 1. Let G = G(x, y, Dy) ∈
�1

t (Z) be an N × N matrix of tangential pseudo-differential operators with
homogeneous principal symbol g. We assume that Dx IdN −G is of real prin-
cipal type. We are interested in the singularities of normally regular solutions
of

Dxw − G(x, y, Dy)w ≡ 0 mod C∞(Z)
N
. (12)

Let (y(0), η(0)) ∈ T �(Y ) \ 0 non-glancing for Dx IdN −G.
The following decoupling lemma is due to Taylor [Tay75] in the case of

simple real characteristics and to Gérard [Gér85] in the case of real principal
type systems.

Lemma 2.1. In a conic neighbourhood � of (0, y(0), η(0)), the algebraic and geo-
metric multiplicities of the real eigenvalues of g(x, y, η) are equal and constant.
There are homogeneous real-valued µ1, . . . , µJ ∈ S1

t which enumerate, in �, the
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distinct real eigenvalues of g. Let Nj denote the multiplicity of µj . There is an
elliptic N × N matrix S ∈ �0

t such that microlocally near (0, y(0), η(0)),
(
Dx IdN −G

)
S ≡ S

(
Dx IdN −H

)
mod �−∞

t . (13)

H ∈ �1
t is a block matrix with non-zero entries only on the diagonal,

H =






µ1(x, y, Dy) IdN1

. . .

µJ (x, y, Dy) IdNJ

E+
E−






. (14)

The imaginary parts of the eigenvalues of the principal symbols of E+, E− ∈ �1
t

are positive and negative, respectively.

Proof. The following constructions hold in some conic neighbourhood � of
(0, y(0), η(0)). � may become smaller as the proof proceeds.

Since A = Dx IdN −G is of real principal type its characterictic variety is
V = q−1(0) with a scalar real principal type symbol q. The non-glancing assump-
tion implies ∂q/∂ξ �= 0 at points (0, y(0), ξ, η(0)) ∈ V . By the implicit function
theorem, the real eigenvalues of g(x, y, η) are smooth homogeneous functions
µ1(x, y, η) < · · · < µJ (x, y, η) in �. We extend them as homogeneous real
valued symbols µ1, . . . , µJ ∈ S1

t (Z × R
n).

Let µ be a real eigenvalue of g(0) = g(0, y(0), η(0)). We show that the geomet-
ric multiplicity of µ equals its algebraic multiplicity,

ker
(
(µ − g(0))r

) = ker
(
µ − g(0)

)
, ∀r ∈ N. (15)

Here and in the following, to ease notation, a scalar is identified with its multiple
of the identity matrix, e.g., µ = µ IdN .

Let a = ξ − g denote the principal symbol A. By the non-glancing hypoth-
esis ∂/∂ξ is transversal to the characteristic variety det a = 0 at (y(0), η(0)). The
intrinsic characterisation of real principal type [Den82, Prop. 3.2] shows that
∂a/∂ξ = Id maps the kernel of a isomorphically onto the cokernel of a at ξ = µ.
Hence

ker(µ − g(0)) ∩ im(µ − g(0)) = 0. (16)

Equation (15) easily follows from (16).
Let γ1, . . . , γJ be non-intersecting closed positively oriented Jordan curves in

the complex plane such that γj encloses µj(0, y(0), η(0)) but no other eigenvalue
of g(0). (To enclose means that the winding number is non-zero.)

πj (x, y, η) =
∫

γj

(λ − g(x, y, η)/|η|)−1 dλ

2πi
(17)
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is the spectral projector onto the sum of generalized eigenspaces associated with
the eigenvalues enclosed by γj of g(x, y, η)/|η|. Clearly, ker

(
µj −g(0)

) ⊂ im πj .
By (15) equality holds at (0, y(0), η(0)). By [Den82, Prop. 3.2] the dimension of
ker

(
µj − g(0)

)
is constant. Also the rank of πj is constant in �. Hence

ker(µj − g) = im πj in �. (18)

It follows from (18) that the geometric and the algebraic multiplicities of the
real eigenvalues of g coincide everywhere in �. Therefore we can find an elliptic
N × N matrix s(x, y, η) ∈ S0

t such that s−1gs ∈ S1
t has, in �, the block structure

of the principal symbol of the operator H claimed in (14).
Choose S with principal symbol equal to s. We obtain (13) with the error class

�−∞
t replaced by �0

t , however. We use the uncoupling technique of [Tay75] to
obtain K ∈ �−1

t such that the error is �−∞
t if we replace S by S(Id +K).

After doing this, however, H will only satisfy a weaker form than (14) with
µj(x, y, Dy) IdNj

is replaced by µj(x, y, Dy) IdNj
+Mj with some Mj ∈ �0

t .
By [Gér85, Lemme 2.1.] there exist elliptic Nj × Nj matrices Ej ∈ �0

t such that
(
(Dx − µj(x, y, Dy)) IdNj

−Mj

)
Ej ≡ Ej

(
(Dx − µj(x, y, Dy)) IdNj

)

holds modulo operators in �−∞. Let E ∈ �0
t , N × N , denote the diagonal block

matrix with blocks E1, . . . , EJ and, in the lower right corner, Id. Finally, to
remove the Mj ’s, we replace S by SE. ��

Let B be a K ×N matrix in �0
t with homogeneous principal symbol b. Given

h ∈ D′(Y )
K we wish to solve equation (12) under the following boundary con-

dition specified by B and h,

Dxw − Gw ≡ 0 mod C∞(Z)
N
,

Bw|Y ≡ h mod C∞(Y )
K
.

(19)

Let M+ ∪M− = {1, . . . , J } be a disjoint union decomposing the set of real eigen-
values of g(0, y(0), η(0)) into two parts. We call the eigenvalue µj forward (resp.
backward) if j ∈ M+ (resp. j ∈ M−). Correspondingly, we call characteristics
and bicharacteristic curves forward or backward. In case Dx IdN −G is hyperbolic
with respect to a time variable t (x, y) such a decomposition arises as follows. A
bicharacteristic γ issuing from the boundary into the interior is forward (resp.
backward) if t increases (resp. decreases) along γ .

We shall find a microlocal parametrix of the boundary problem (19) if a con-
dition of Lopatinski type holds. Define, for (y, η) sufficiently close to (y(0), η(0)),
the forward Lopatinski space as the following linear subspace of C

N ,

L+
g (y, η) = im

∫

γ +
(λ − g(0, y, η))−1 dλ. (20)
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γ + is a closed positively oriented Jordan curve in the complex plane which
encloses the eigenvalues of g(0) = g(0, y(0), η(0)) which are real and forward
or which have positive imaginary part. γ + encloses no other eigenvalues of g(0).

Proposition 2.2. Assume that b(0, y(0), η(0)) maps L+
g (y(0), η(0)) onto C

K . Then
there exists a conic neighbourhood � ⊂ T �(Y ) of (y(0), η(0)) and an operator
W : D′(Y )

K → D′(Z)
N such that the following holds. For every h ∈ D′(Y )

K

with WF(h) ⊂ � the distribution w = Wh ∈ D′(Z)
N is normally regular and

solves (19). WF(w|Z◦) is contained in the union of the forward bicharacteristics
which issue from WF(h). W0 := rY W , W followed by restriction to Y , is a N ×K

pseudo-differential operator of order 0 on Y . The principal symbol w0(y, η) of
W0 maps C

K into L+
g (y, η) and satisfies bw0 = Id in �.

Proof. Let S and H as in Lemma 2.1, and denote their principal symbols by
s and h, respectively. Clearly, gs = sh. Hence L+

g = sL+
h . The block struc-

ture of H and the partitioning into forward and backward eigenvalues defines a
projector � on C

N . � projects onto the subspace corresponding to the blocks
µj(x, y, Dy) IdNj

, j ∈ M+, and E+ of H along the subspace corresponding to
the blocks µj(x, y, Dy) IdNj

, j ∈ M−, and E− of H . Notice that L+
h = �C

N .
By assumption

C
K = bL+

g = bsL+
h = bs�C

N. (21)

The Cauchy problems

(Dx − µj(x, y, Dy))v ∈ C∞(Z), v|Y ≡ f mod C∞(Y ),

are solved using scalar Fourier integral operators Vj , [Dui73]. The wavefront set of
the solution v = Vjf is contained in the image of the bicharacteristics associated
with ξ − µj(x, y, η) = 0 which issue from WF(f ). The parabolic system

Dxv − E+v ∈ C∞(Z), v|Y ≡ f mod C∞(Y ),

is solved using a Poisson operator V+, [Tay75]. The solution v = V+f has no sin-
gularities in Z◦. Therefore we may construct an operator V : D′(Y )

N → D′(Z)
N

such that the following holds for any f ∈ D′(Y )
N . v = Vf is normally regular,

Dxv − Hv ∈ C∞(Z)N , and WF(v|Z◦) is contained in the union of the for-
ward bicharacteristics which issue from WF(f ). Furthermore, modulo C∞(Y )N ,
v|Y ≡ �f .

Recall the operator of restriction to Y , rY . rY BSV is a K × N system of
pseudo-differential operators onY . Its principal symbolbs� is, close to (y(0), η(0)),
surjective by (21). Choose a N ×K operator C ∈ �0(Y ) which is a right inverse,
rY BSV C ≡ BrY SV C ≡ Id. W = SV C satisfies the claims. ��
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Remark 1. If the boundary data f is a Lagrangian distribution then the solution
w = Wf is Lagrangian with respect to the forward characteristics. Röhrig [Röh]
derives the transport equations for the principal symbol of w along the bicharac-
teristics.

To prepare waves with specified polarization we need the following result
about propagation of polarization at the boundary. Essentially this is a corollary
of [Gér85, Théorème 6.1].

Proposition 2.3. Let w ∈ D′(Z)
N normally regular such that (y(0), η(0)) /∈

WFb(Dxw − Gw). Assume w|Y ∈ H(s−1)(Y ), s > 1. Let µ ∈ S1(Y × R
n) be a

real eigenvalue of g(0, ·) in a conic neighbourhood of (y(0), η(0)). Let Q ∈ �0(Y )

have principal symbol equal to, in a neighbourhood of (y(0), η(0)), the spectral
projector on the eigenspace of the eigenvalue µ. Then (y(0), η(0)) ∈ WF(s)(Qw|Y )

if and only if WF(s)
pol(w) contains a Hamilton orbit above the µ-bicharacteristic

which issues from (y(0), η(0)).

Proof. Choose a parametrix S−1 of S in Lemma 2.1 and put w′ = S−1w. The
hypotheses of the Proposition still hold with w replaced by w′ and with G replaced
by H of (14). Let Qµ denote the projection to the components of the block which
corresponds to µ in the block decomposition (14). Then Q − Qµ ∈ �−1(Y )

and, using the assumption on w|Y , WF(s)(Qµw|Y ) = WF(s)(Qw|Y ). v = Qµw

solves the diagonal system (y(0), η(0)) /∈ WFb(Dxv − µ(x, y, Dy)v). The asser-
tion follows from well-known results on propagation of singularities in the Cauchy
problem for scalar strictly hyperbolic equations and from [Den82, Theorem 4.2].

��

3. Second order boundary problems

Here we reduce the Dirichlet problem for second order real principal systems to
a boundary problem for a first order real principal type system.

Let P = D2
x IdK +P1(x, y, Dy)Dx + P2(x, y, Dy) be a K × K matrix of

differential operators of second order. We are interested in the Dirichlet problem

Pu ≡ 0 mod C∞(Z)K,

u|Y ≡ f mod C∞(Y )K.
(22)

Any solution u is normally regular.
We associate with (22) an equivalent first order boundary problem (19) as

follows. Set N = 2K , G ∈ �1
t the N × N matrix

G =
(

0 〈Dy〉 IdK

−P2 〈Dy〉−1 −P1

)
, (23)
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and B ∈ �0
t the K × N matrix with Bw = w1, w = (w1, w2). Here 〈Dy〉 ∈ �1

t

denotes the operator with full symbol 〈η〉 = (1 + |η|2)1/2 ∈ S1
t .

Lemma 3.1. Let f ∈ D′(Y )
K and h = 〈Dy〉f . Solutions u of (22) and w =

(w1, w2) of (19) are related as follows. If u solves (22) then w = (w1, w2) =
(〈Dy〉u, Dxu) solves (19). Conversely, if w solves (19) then u = 〈Dy〉−1w1 solves
(22).

Proof. The first statement follows immediately from the definition of G and B.
For the proof of the converse statement let w be a solution of (19). The first row
of Dxw ≡ Gw and the ellipticity of 〈Dy〉 imply Dxu ≡ w2. Hence the second
row implies Pu ≡ 0. By our choice of B and h the boundary conditions are
equivalent: 〈Dy〉u = Bw ≡ h = 〈Dy〉f . ��

Let (x, y, ξ, η) ∈ T �(Z), η �= 0. Let p = ξ 2 + p1ξ + p2 denote the principal
symbol of P . Then the principal symbol of G is

g =
(

0 |η|
−p2/|η| −p1

)
.

Lemma 3.2. Let η �= 0. Then

(ξ − g′)(ξ − g) =
(

p 0
0 p

)
where g′ =

( −p1 −|η|
p2/|η| 0

)
(24)

and

ker(ξ − g) =
( |η| IdK

ξ IdK

)
ker(p). (25)

The characteristic varieties of P and Dx IdN −G are equal. If P is of real principal
type then so is Dx IdN −G.

Proof. Equation (24) is verified by direct computation. Clearly, (ξ−g)w = 0 with
w = (w1, w2)

T , holds if and only if ξw1 = |η|w2 and pw2 = 0. To prove the last
assertion assume there is a K × K matrix of symbols, p̃, such that p̃p = q IdK

holds with a scalar real principal type smbol q. Then, using (24), we obtain a
N × N matrix of symbols, ã, such that ã(ξ − g) = q IdN . ��
Remark 2. Assume P of real principal type. Let C0u = (〈Dy〉u|Y , Dxu|Y ) denote
the Cauchy data of a solution of Pu ≡ 0. It follows from Proposition 2.3 and
Lemma 3.2 that WF(s+1)

pol (u) contains a Hamilton orbit above a given bicharac-

teristic issuing from γ = (y, η) ∈ T �(Y ) \ 0 if and only if γ ∈ WF(s)(QC0u)

where Q ∈ �0(Y ) with principal symbol equal to the spectral projector onto
the eigenspace {(〈η〉a, ξa); p(0, y, ξ, η)a = 0} which corresponds to the given
characteristic.
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We give sufficient conditions for the existence of a microlocal parametrix for
the boundary problem (22).

Proposition 3.3. Assume P of real principal type. Let (y(0), η(0)) ∈ T �Y \ 0 be
non-glancing for P . Let γ + be a closed positively oriented Jordan curve which
does not meet the poles of λ �→ p(0, y(0), λ, η(0))

−1
and which has winding num-

ber 1 (resp. 0) with respect to the poles with positive (resp. negative) imaginary
part. Assume that

K ≥ rank
∫

γ +

(
λ − g(0, y(0), η(0))

)−1
dλ, (26)

K ≤ rank
∫

γ +
p(0, y(0), λ, η(0))

−1
dλ. (27)

Then there exists a conic neighbourhood � ⊂ T �(Y ) of (y(0), η(0)) and an opera-
tor U : D′(Y )

K → D′(Z)
K such that for any f ∈ D′(Y )

K with WF(f ) ⊂ � the
distribution u = Uf ∈ D′(Z)

K is normally regular and solves (22). WF(u|Z◦) is
contained in the union of the forward bicharacteristics which issue from WF(f ).
The restriction of the normal derivative to Y , U ′ := rY DxU ∈ �1(Y ), is a K ×K

pseudo-differential operator with principal symbol u′ which satisfies

u′(y(0), η(0))

∫

γ +
p(0, y(0), λ, η(0))

−1
dλ =

∫

γ +
λ p(0, y(0), λ, η(0))

−1
dλ. (28)

Proof. We use the equivalence, stated in Lemma 3.1, of (22) with the first order
boundary problem (19).

A real eigenvalue of g(0, y(0), η(0)) is, by definition, forward if it is enclosed
by γ +. First we show that our assumptions imply the following formula for the
Lopatinski space,

L+
g (y(0), η(0)) = im

(∫
γ + |η(0)| p(0, y(0), λ, η(0))

−1
dλ

∫
γ + λ p(0, y(0), λ, η(0))

−1
dλ

)

. (29)

From (24) we infer that the resolvent of g is

(λ − g)−1 =
(∗ |η|p(λ)−1

∗ λp(λ)−1

)
where p(λ) = λ2 + p1λ + p2, λ ∈ C. (30)

Here ∗ indicates unspecified expressions. Hence the right hand side in (29) is
contained in the left hand side. Equality follows from the dimension assump-
tions (26) and (27).

The principal symbol of B is b = (IdK, 0). Therefore (29), (26), and (27)

imply bL+
g = C

K at (0, y(0), η(0)). Proposition 2.2 applies to give a solution oper-
ator of (19), W = (W1, W2)

T with W1 = BW . Define U = 〈Dy〉−1W1〈Dy〉.
It follows from Lemma 3.1 that PU ≡ 0, and rY U ≡ Id, and W2〈Dy〉 ≡



Elastodynamics with residual stress and travel times 575

DxU . Hence (〈Dy〉, U ′) ≡ rY W 〈Dy〉 ∈ �1(Y ). The principal symbol of rY W ,
(IdK, |η|−1u′(y, η))T , maps C

K into the Lopatinski space L+
g (y, η). Now we can

read the formula (28) off the equation (29).
The bound on WF(u|Z◦) follows from the bound on WF(w|Z◦) in Proposi-

tion 2.2. ��

4. Isotropic elastodynamic equations

In the following P denotes an operator for isotropic elastodynamics introduced
in (2) and (3) such that (8) holds.

The boundary problem Pu = g in R × �, and u = 0 on R × ∂�, has the

variational formulation: (ρü, v) + a(u, v) + (g, v) = 0, ∀v ∈ (
◦

H(1)(�)
)3

. Here
a = a0 + aR, a0(u, v) = ∫

�
tr
(
CE(u) E(v)T

)
dx, and aR(u, v) = ∫

�
tr
(
(∇u) R

(∇v)T
)
dx. It follows from Korn’s inequality that a0 satisfies a coerciveness

estimate |a0(u, u)| ≥ c‖u‖2
1 with a positive constant depending only on � and

on a lower bound on the Lamé coefficient µ, [DL76]. Given L > 0 there exists
ε > 0 such that a is coercive if P ∈ L(L, ε). In fact, aR is absorbed into the
coerciveness estimate if (6) is assumed with 0 < ε = ε(L) sufficiently small.
We use [DL76, Thm. III.4.1.] to conclude that the initial boundary value problem
(4) for displacement boundary data f ∈ H(s)

c (R × ∂�)3, s ≥ 3, is well-posed.
In particular, the displacement-to-traction map (7) is defined,

	 : H(s+1)
c (R × ∂�)3 → H(s)(R × ∂�)3 if s ≥ 2. (31)

Let (t, x, τ, ξ) denote a generic point in T �(R ×�) \ 0. The Euclidean metric
ξ 2 = ξ ·ξ is used to identify tangent and cotangent vectors of �. For η, ζ ∈ C

3 the
dot product is the analytic (non-Hermitian) extension, η · ζ = η1ζ1 +η2ζ2 +η3ζ3.
π = π(ξ) = (ξ ⊗ ξ)/(ξ · ξ) denotes the orthogonal projection onto a nonzero
direction if ξ ∈ R

3 \ 0.
As a consequence of (8) and λ + µ > 0 the metrics defined in (9) and (10)

satisfy

0 < 〈ξ, ξ〉S < 〈ξ, ξ〉P if ξ �= 0. (32)

The norms associated with these metrics are denoted |ξ |S/P = √〈ξ, ξ〉S/P .

Proposition 4.1. The scalar symbols qS/P (t, x, τ, ξ) = ρ(x)
(
τ 2 −〈ξ, ξ〉S/P

)
and

their product qSqP are of real principal type. P is a system of real principal type
with principal symbol

p = qS(Id3 −π) + qP π. (33)
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Proof. A straightforward computation gives the principal symbolp ofP at (t, x, τ,

ξ) ∈ T �(R × �) as follows:

p = ρτ 2 Id3 −(λ + µ)(ξ ⊗ ξ) − µξ 2 Id3 −(ξ · Rξ) Id3 .

Hence p has the asserted form. It follows from (32) that qS and qP are of real
principal type. Furthermore

qP (t, x, τ, ξ) < qS(t, x, τ, ξ) if ξ �= 0. (34)

Hence also q = qSqP is a scalar symbol of real principal type. Now q−1(0) =
(det p)−1(0) and p̃p = q Id for p̃ = qP (Id3 −π) + qSπ . According to [Den82,
Definition 3.1] P is a system of real principal type with characteristic variety
q = 0. ��
Remark 3. Man [Man98] proposes for elastodynamics with residual stress R a
more general constituitive law S = R + ∇u · R + CE where the elasticity tensor
C also depends linearly on R. In the isotropic case CE consists of the right-hand
side in (3) plus the R dependent terms

β1 tr(E) tr(R)I + β2 tr(R)E + β3
(

tr(E)R + tr(ER)I
)+ β4

(
ER + RE

)
.

(35)

In the inverse problem for real media the additional terms should not be neglected
since typically R is much larger than the stress CE. See [Man98, Sect. 2]. A
straightforward calculation shows that the elastodynamic operator P with this
isotropic stress-strain relation is still of real principal type in case β3 = β4 = 0,
λ + 2µ + β1 tr(R) > µ + β2 tr(R)/2, and (µ + β2 tr(R)/2)|ξ |2 + Rξ · ξ > 0
when ξ ∈ T �

x (�) \ 0.

We recall some notions of the microlocal theory of boundary problems and
apply them to the system of elastodynamics. Let γ = (t, x, τ, ξ|) ∈ T �(R×∂�)\
0. By this we mean that there is given (t, x, τ, ξ) ∈ T �(R × �) \ 0 with x ∈ ∂�,
and that we define ξ| = ξ |Tx(∂�) ∈ T �

x (∂�). γ is called an elliptic, a hyperbolic,
or a glancing point of S/P mode if the following quadratic equation in z,

qS/P (t, x, τ, ξ − zν(x)) = 0,

has no real roots, two distinct real roots, or a double real root, respectively. T �(R×
∂�) \ 0 decomposes into the disjoint union of the elliptic region ES/P , the hyper-
bolic region HS/P , and the glancing hypersurface GS/P of the S/P mode. Because
of (34) we have ES ⊂ EP and HP ⊂ HS . T �(R × ∂�) \ 0 is the disjoint union
of the hyperbolic region HP , the mixed region EP ∩ HS , the elliptic region ES ,
and the glancing set G = GS ∪ GP . The lens maps satisfy SS ⊂ HS × HS and
SP ⊂ HP × HP .
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A simple real root z is called forward (resp. backward) if the bicharacteris-
tic curve starting in direction ξ − zν enters R × � when time increases (resp.
decreases). Characteristics and bicharacteristics are called forward or backward
correspondingly. Observe from Hamiltons equations that a characteristic ξ − zν,
z real, of qS/P is forward (resp. backward) if τ 〈ξ − zν, ν〉S/P is positive (resp.
negative). We denote by zS/P = zS/P (t, x, τ, ξ, ν) the forward real root z or the
complex root z with positive imaginary part of qS/P (t, x, τ, ξ −zν) = 0. We shall
use the abbreviation ξS/P = ξ − zS/P ν(x).

Given δ > 0 we define

�δ = {(t, x, τ, ξ|) ∈ T �(R × ∂�) \ 0 ; |τ | ≥ δ|ξ||}. (36)

Here |ξ|| = |ξ | if and only if ξ ·ν = 0. If P ∈ L(L, 1/2) then a straightforward esti-
mate shows that we can choose δ = δ(L) > 0 such that T �(R×∂�)\(�δ∪0) ⊂ ES

holds. Therefore the following result implies, in particular, that the displacement-
to-traction map 	 is pseudo-differential microlocally in the hyperbolic and in
the mixed regions if P ∈ L(L, ε), ε > 0 sufficiently small. Moreover, 	 is
pseudo-differential at every non-glancing point if R = 0.

Proposition 4.2. Let L, δ > 0. Assume (5). There exists 0 < ε = ε(L, δ) such
that under the assumption (6) the following holds. Given γ ∈ �δ \ G then 	

equals, in a microlocal neighbourhood of (γ, γ ), a first order pseudo-differential
operator with principal symbol given as follows.

σ(	) : a �→ λ(a · ξ ′)ν + µ(a · ν)ξ ′ + µ(ξ ′ · ν)a + (Rξ ′ · ν)a (37)

when a ∈ Cξ ′, resp. a · ξ ′ = 0, with ξ ′ = ξP , resp. ξ ′ = ξS .

We need the following fact about the characteristics of P .

Lemma 4.3. Let L, δ > 0. Assume (5). There exists 0 < ε = ε(L, δ) such that
the following is true if (6) holds. For γ = (t, x, τ, ξ|) ∈ �δ \ G we have zS �= zP ,
ξS

2 �= 0, ξP
2 �= 0, and

ξS · ξP �= 0. (38)

We prove Lemma 4.3 in section 7.

Proof (of Proposition 4.2). Choose ε as in Lemma 4.3. Decreasing ε > 0 if nec-
essary we assume that the initial boundary value problem (4) is well-posed and
that, therefore, 	 is defined. Let γ = (t, x, τ, ξ|) ∈ �δ \ G, ξ · ν(x) = 0. Flatten
the boundary ∂� near x by a change of coordinates such that the differential at x

is orthogonal.
We consider the symbol p = p(t, x, ·). Its inverse is p−1 = q−1

S (Id3 −π) +
q−1

P π . Let γ + be a closed Jordan curve enclosing zS and zP but no other roots of
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q(τ, ξ − zν) = 0. Observe rS/P := (d/dz)qS/P (τ, ξ − zν)|z=zS/P
�= 0. By the

residue theorem

Aj : =
∫

γ +
zj p(τ, ξ − zν)−1 dz

2πi

= (z
j

S/rS) (Id3 −π(ξS)) + (z
j

P /rP ) π(ξP )

(39)

for every non-negative integer j . We show that A0 is non-singular.Assume A0w =
0. Then 0 = ξS · A0w = (ξS · ξP )(ξP · w)/(rP ξ 2

P ). Applying Lemma 4.3 we infer
ξP ·w = 0. Therefore w = π(ξS)w and 0 = (ξP ·ξS)(ξS ·w).Applying Lemma 4.3
again we get ξS · w = 0. Hence w = π(ξS)w = 0.

The invertibility of A0 implies that (27) holds with K = 3. Inequality (26)

holds because the rank is bounded by N = 6 minus the dimension of the eigen-
spaces corresponding to eigenvalues not enclosed by γ + which is 3.

We apply Proposition 3.3. We find, microlocally near γ , a parametrix U :
f �→ u of the boundary problem (4). For a vector field V = (V1, V2, V3) on
the closure of � define DV = ∑3

j=1 VjDj and BV as (DV Id3)U followed by
restriction to R × ∂�. BV is a 3 × 3 system of pseudo-differential operators on
R×∂� of order 1. We compute its principal symbol. Formula (28) translates into
σ(B−ν)(γ )A0 = A1. Using (39) we obtain

σ(B−ν)(γ ) : a �→
{

zSa if a ∈ A0ξ
⊥
P ,

zP a if a ∈ A0CξS .

Formula (39) and the invertibility of A0 imply A0ξ
⊥
P = ξ⊥

S and A0CξS = CξP .
Hence, if we recall ξ · ν(x) = 0, we rewrite the above as

σ(BV )(γ ) : a �→
{

(V (x) · ξS)a if a ∈ ξ⊥
S ,

(V (x) · ξP )a if a ∈ CξP ,
(40)

with V = ν. For vector fields V tangent to ∂� we compute σ(BV )(γ ) = (V (x) ·
ξ) Id3. Thus (40) holds for any vector field V .

Observe that γ /∈ WF
(
	f −(ν ·S(Uf ))|R×∂�

)
if WF f is contained in a small

conic neighbourhood of γ . Here S(u) denotes the stress tensor which corresponds
to the displacement u. The displacement-to-traction map u �→ ν · S(u) is a first
order differential operator with principal symbol

s(x, η) := λ(ν ⊗ η) + µ(η ⊗ ν) + µ(η · ν) Id3 +(Rη · ν) Id3, (41)

η ∈ T �
x (�). We can write 	 as a sum of terms CBV , C a 3 × 3 matrix of smooth

functions. It follows that that 	 ∈ �1 in a conic neigbourhood of γ . Formula (37)

for the principal symbol of 	 follows from (41) and (40). ��
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Remark 4. Given L > 0 we can choose δ > 0 and 0 < ε ≤ 1/2 such that
the following holds if P ∈ L(L, ε): T �(R × ∂�) \ (�δ ∪ 0) ⊂ ES ; the initial
boundary value problem (4) for f ∈ H(s)

c (R × ∂�)3, s ≥ 3, is well-posed; the
assertions in Proposition 4.2 hold. It is clear from the proof of Proposition 4.2
that, under such hypotheses, microlocal forward and backward parametrices exist
in the hyperbolic, in the mixed, and in part of the elliptic region.

5. Propagation of polarization

Let L > 0. Choose 0 < δ, ε as in Remark 4 at the end of section 4. In the follow-
ing we assume P ∈ L(L, ε).

We analyze the polarization of solutions of Pu = 0 by applying polarization
filters, i.e., certain approximate projection operators, to the Cauchy data of u.
The Cauchy data of a solution of Pu ∈ C∞(R × �) are, by definition, Cu =
(Eu|R×∂�, ν · S|R×∂�). Here, in order to have C of order 1, we have chosen a
fixed scalar elliptic operator E ∈ �1(R × ∂�). Denote the principal symbol of
E by e. Notice that the Cauchy data of a solution u of the initial boundary value
problem Pu = 0, u = f at R× ∂�, and u = 0 initially, are represented using the
displacement-to-traction map as follows: Cf = (Ef, 	f ) = Cu. Here, abusing
notation, we also defined Cf .

We now describe, on the principal symbol level, the spaces onto which polar-
ization filters project. Let γ = (t, x; τ, ξ|) ∈ T �(R × ∂�) \ 0. Set, with s defined
in (41),

B±
S/P (γ ) =

(
e(γ ) Id3

s(x, ξ − z±
S/P ν)

)
ker p(t, x, τ, ξ − z±

S/P ν) ⊂ C
6

ifγ ∈ HS/P . Here z+
S/P and z−

S/P are the forward and backward roots ofqS/P (t, x, τ,

ξ − zν) = 0, respectively. Also define the linear subspaces

BS/P (γ ) =
∑(

e(γ ) Id3

s(x, ξ − zν)

)
ker p(t, x, τ, ξ − zν)

where the sum ranges over the roots z±
S/P of qS/P (t, x, τ, ξ − zν) = 0. Clearly,

BS/P (γ ) = B+
S/P (γ ) + B−

S/P (γ ) if γ ∈ HS/P . The disjoint unions

B±
S/P = ∪̇γ∈HS/P

B±
S/P (γ ) and BS/P = ∪̇γ /∈GS/P

BS/P (γ )

are subsets of the trivial bundles, C
6.

Lemma 5.1. B±
S , resp. B±

P , are vector subbundles of C
6 over HS , resp. HP , of

ranks 2, resp. 1. BP is a vector subbundle of C
6 over HP ∪EP of rank 2. Further-

more

C
6 = B+

S ⊕ B−
S ⊕ B+

P ⊕ B−
P over HP ,

C
6 = B+

S ⊕ B−
S ⊕ BP over HS ∩ EP .

(42)
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Proof. Given a point in ∂� we introduce coordinates x = (x1, . . . , xn) =
(x ′, xn), n = 3, such that � and ∂� correspond to xn > 0 and xn = 0,
respectively. Let ξ = (ξ ′, ξn) denote the dual variables. We also arrange that,
at the given point in the coordinates, formula (41) with η = ξ still holds. At
xn = 0 we define h1 by

(
e Id3

s

)
=
(

h1 Id3 0
∗ ∂s/∂ξn

)(
(τ 2 + ξ ′2)1/2 Id3

ξn Id3

)
.

Here ∗ indicates an unspecified expression. h1 is elliptic because e is. µ, λ+µ ≥ 0
and (8) imply the ellipticity of ∂s/∂ξn. Hence

h(t, x ′, τ, ξ ′) =
(

h1 Id3 0
∗ ∂s/∂ξn

)
(43)

defines an elliptic 6 × 6 symbol of order 0. Therefore, it suffices to prove the
Lemma when, in the definitions of the vector spaces B∗

S/P (γ ), the symbols e and

s(x, ξ) are replaced by (τ 2 +ξ ′2)1/2 Id3 and ξn Id3, respectively. Having made this
replacement the assertions follow from spectral decomposition of the first order
symbol g associated with p in Lemma 3.2 and from (25) together with the known
dimensions of ker p. ��

Letπ±
S/P andπP denote the projectors associated with the decompositions (42).

In the following �±
S/P and �P denote 6×6 systems of pseudo-differential opera-

tors of order 0 having principal symbols π±
S/P and πP , respectively. The operators

�±
S , �±

P , and �P are defined microlocally in HS , HP , and HP ∪EP , respectively.
These operators serve to define wave fronts sets which allow to distinguish the
mode, S/P , and the forward or backward propagation direction, ±, of Cauchy
data Cu. Given a regularity s ∈ R, a mode m = S/P , and a direction σ = ±
the corresponding wave front set of Cu consists of those elements in Hm which
belong to WF(s)(�σ

mCu). Abusing notation we denote this set WF(s)(�σ
mCu), i.e.,

by convention, we always have WF(s)(�±
S/P Cu) ⊂ HS/P .

We now state how the wave front set of the Cauchy data can be used to test
the polarization of the displacement u.

Proposition 5.2. Let u ∈ D′(R × �)
3

and s ≥ 3 such that Pu ∈ C∞(R × �)
3

and Cu ∈ H(s−1)(R × ∂�)
6
. Let γ ∈ T �(R × ∂�) \ 0, γ /∈ GP . Then γ ∈

WF(s)(�±
S/P Cu) if and only if γ ∈ HS/P and WF(s+1)

pol (u) contains a Hamilton
orbit above the shear/compressional wave bicharacteristic which issues from γ

into the interior. The bicharacteristic is forward for the plus sign and backward
for the minus sign.

We point out that the assumption s ≥ 3 is introduced only because of (31).
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Proof. Introduce coordinates x = (x1, . . . , xn), n = 3, as in the proof of
Lemma 5.1. Abbreviate Dx = (D′, Dn). The simplified Cauchy data

C0u = (〈Dt, D
′〉u|xn=0, Dnu|xn=0)

are related to the Cauchy data Cu as follows: Cu ≡ HC0u where H ∈ �0(R ×
∂�)6×6 with principal symbol equal to h of equation (43). It now suffices to
prove the Proposition with Cu replaced by C0u and the operators �±

S/P replaced
by H−1�±

S/P H . The assertions now follow from Proposition 2.3 if we recall the
argument in Remark 2 of section 3. ��

Curves which are bicharacteristics over the interior and reflected at non-glanc-
ing boundary points, with or without conversion between shear and compressional
mode, are called broken bicharateristics. The propagation of singularities in the
Cauchy data is stated recursively as follows.

Proposition 5.3. Let f ∈ H(s)
c (R × ∂�), s ≥ 3, with WF(s+1)(f ) ⊂ �δ. Let

T ∈ R such that no forward broken bicharacteristic which issues from

WF(s+1)(f ) ∩ (WF(s)(�+
S Cf ) ∪ WF(s)(�+

P Cf )
)

intersects G ∩ {t ≤ T }. Then

WF(s)(Cf ) ∩ {t ≤ T } = (
WF(s+1)(f ) ∪ SS(WF(s)(�+

S Cf ))

∪ SP (WF(s)(�+
P Cf ))

) ∩ {t ≤ T }. (44)

The functional notation for SS/P in (44) is justified because these relations are
in fact maps.

Proof. Let u denote the solution of Pu = 0 with Dirichlet boundary value f

and zero initial data. By [Den82, Theorem 4.2] and [Gér85] the polarization set
WF(s+1)

pol (u) ∩ {t ≤ T } is contained in the union of Hamilton orbits which lie

above the broken bicharacteristics which issue from WF(s+1)(f ). We apply Prop-
osition 5.2 at both endpoints of bicharacteristics which connect boundary points.
We obtain SS/P

(
WF(s)(�+

S/P Cf )
) ⊂ WF(s)(�−

S/P Cf ). Therefore the right hand
side of (44) is contained in the left hand side. To prove the opposite inclusion let
γ ∈ WF(s)(Cf )\WF(s+1)(f ). Then γ is the endpoint of a forward bicharacteristic
contained in WF(s+1)(u) and, by Proposition 5.2, issued from WF(s)(�+

S Cf ) or
WF(s)(�+

P Cf ). ��

Proposition 5.2 combined with the following result permits us to specify, with-
out having to know the coefficients of P , sources f for which compressional
singularities are muted.
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Proposition 5.4. Choose M ∈ �0(R × ∂�)3×3 such that its principal symbol
m equals at every (t, x, τ, ξ|) ∈ T �(R × ∂�) the orthogonal projector onto the
one-dimensional subspace of R

3 which is orthogonal to ξ and ν(x). Let γ ∈ HP .
There is a conic neighbourhood � ⊂ HP of γ such that the following inclusion
holds for every f ∈ H(s)

c (R × ∂�)3, s ≥ 3, with WF(f ) ⊂ �:

WF(s)
(
�+

P Cf
) ⊂ WF(s+1)(f − Mf ). (45)

Proof. First we show
(

m 0
0 m

)
C

6 ⊂ B+
S + B−

S . (46)

To see this let γ = (t, x, τ, ξ|) and a ∈ C
3 with ξ · a = ν · a = 0, ν = ν(x).

In view of (33) a belongs to the kernel of p(t, x, τ, ξ±
S ). In view of the defini-

tion (41) and (9) we have s(x, ξ±
S )a = 〈ξ±

S , ν〉
S
a. Hence (e(γ )a, 〈ξ±

S , ν〉
S
a) ∈

B±
S (γ ). 〈ξ+

S − ξ−
S , ν〉

S
�= 0 because z+

S �= z−
S . Therefore we obtain (0, a), (a, 0) ∈

B+
S (γ ) + B−

S (γ ) proving (46).
πP = π+

P +π−
P vanishes on B+

S +B−
S . Therefore (46) and the symbol calculus

imply

�P

(
M 0
0 M

)
∈ �−1. (47)

Choose the conic neighbourhood � of γ in such a way that the displacement-to-
traction map 	 is a pseudo-differential operator in �×�. Shrinking � if necessary
we may assume that every solution of Pu = 0 which has zero initial data and
Dirichlet data f with WF(f ) ⊂ � does not contain backward bicharacteristics
issuing from � in its wavefront set.

Observe from formula (37) that the principal symbol of 	 maps the space onto
which m projects into itself. Hence 	M − M	M ∈ �0 and therefore

(
EM

	M

)
≡
(

M 0
0 M

)(
E Id3

	M

)
mod �0. (48)

Let f ∈ H(s)
c (R×∂�)3, s ≥ 3, with WF(f ) ⊂ �. Equations (47) and (48) imply

�P

(
EMf

	Mf

)
∈ H(s)(R × ∂�).

Assume γ /∈ WF(s+1)(f − Mf ). Then, recalling Cf = (Ef, 	f ), we obtain

γ /∈ WF(s)(�P Cf ). (49)

Proposition 5.2 and our choice of � imply that (49) holds with �P replaced by
�−

P . Hence (49) also holds with �P replaced by �+
P . ��



Elastodynamics with residual stress and travel times 583

6. Proof of Theorem 1.1

The idea is to recover the lens maps from the elements of WF(	f ) \ WF(f ) with
least time where f ranges over microlocal point sources.

Let L > 0. Choose 0 < δ, ε as in Remark 4 at the end of section 4. Let
P (1), P (2) ∈ L(L, ε). Assume 	(1) = 	(2). We show that the shear and compres-
sional lens maps are equal: S(1)

S = S(2)
S and S(1)

P = S(2)
P . Let S̃ denote the union

of the sets S(j)

S/P ∩ ((G(k) × �δ) ∪ (�δ × G(k))
)
. Observe that S(j)

S/P \ S̃ is open and

dense in S(j)

S/P . We first prove that the lens maps agree outside S̃ .
Fix s ≥ 3. Below we choose, given γ in ∈ �δ nonglancing (for j = 1, 2 and

S/P ), sources f with the properties

f ∈ H(s)
c (R × ∂�)3, WF(s+1)(f ) = R+γ in. (50)

R+γ in is the orbit of γ in under the natural action of R+ on the cotangent bundle.
A construction of distributions f as in (50) is given in, e.g., [Den82, Exam-
ple 2.6]. We study the singularities of the Cauchy data Cf = (Ef, 	(1)f ) =
(Ef, 	(2)f ). Because of the zero initial condition in (4) the backward bicharac-
teristics issuing from γ in are disjoint from WF(s+1)(u). By Proposition 5.2 γ in /∈
WF(s)(�

−(j)

S Cf ) ∪ WF(s)(�
−(j)

P Cf ), j = 1, 2. γ in ∈ WF(s)(Cf ) by assumption
on f since E is elliptic. Therefore γ in ∈ WF(s)(�

+(j)

S Cf ) ∪ WF(s)(�
+(j)

P Cf ) or
γ in ∈ E (j)

S .
Let (γ out, γ in) ∈ S(1)

S \ S̃ . Choose f with (50) and γ in /∈ WF(s+1)(f − Mf ).
Then we have γ in /∈ WF(s)(�

+(j)

P Cf ) for j = 1 and j = 2. In fact, this follows
from Proposition 5.4 if γ in ∈ H(j)

P and from our convention WF(s)(�
+(j)

P Cf ) ⊂
H(j)

P if γ in /∈ H(j)

P . Consequently,

γ in ∈ WF(s)(�
+(1)
S Cf ) and γ in ∈ WF(s)(�

+(2)
S Cf ) ∪ E (2)

S .

Consider the set J of all T ∈ R with WF(s)(Cf ) ∩ {t ≤ T } = R+γ in. J is a
non-empty interval with t (γ in) = min J . We prove t (γ out) = sup J using Prop-
osition 5.3 with S(1)

S/P . For T ∈ J we have WF(s)(�
+(1)
S Cf ) ∩ {t ≤ T } = R+γ in

and WF(s)(�
+(1)
P Cf ) ∩ {t ≤ T } = ∅. Therefore equation (44) becomes

WF(s)(Cf ) ∩ {t ≤ T } = (
R+γ in ∪ R+γ out) ∩ {t ≤ T }.

Since lens maps strictly increase time t this equation remains valid when T =
sup J . It follows that t (γ out) = sup J and

WF(s)(Cf ) ∩ {t ≤ t (γ out)} = R+γ in ∪ R+γ out. (51)

By the same reasoning, now using Proposition 5.3 with S(2)
S/P , we prove that

WF(s)(Cf ) ∩ {t ≤ T } ⊂ (
R+γ in ∪ S(2)

S (R+γ in)
) ∩ {t ≤ T }
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holds for T ≤ sup J = t (γ out). Comparing this with (51) implies (aγ out, γ in)

∈ S(2)
S for some a > 0. The covariable τ is constant along bicharacteristics.

Therefore a = 1. Thus we have shown S(1)
S \ S̃ ⊂ S(2)

S . Interchanging P (1) with
P (2) we obtain

S(1)
S \ S̃ = S(2)

S \ S̃. (52)

Let (γ out, γ in) ∈ S(1)
P \ S̃ . Choose f with (50) and

γ in ∈ WF(s)(�
+(1)
P Cf ) \ WF(s)(�

+(1)
S Cf ). (53)

Arguing as in the previous case, using Proposition 5.3 with S(1)
S/P , we obtain (51).

Using Proposition 5.3 again, now with S(2)
S/P , we infer

WF(s)(Cf ) ∩ {t ≤ t (γ out)} ⊂ R+γ in ∪ S(2)
S (R+γ in) ∪ S(2)

P (R+γ in).

Comparing with (51) we deduce (aγ out, γ in) ∈ S(2)
S ∪ S(2)

P for some a > 0.
Again a = 1 follows. If (γ out, γ in) ∈ S(2)

S then also (γ out, γ in) ∈ S(1)
S by

(52). Hence (γ out, γ in) ∈ S(2)
P if (γ out, γ in) /∈ S(1)

S . Suppose (γ out, γ in) ∈ S(1)
S .

Choose f as above but now with projectors �
+(1)
S/P in (53) replaced by �

+(2)
S/P .

Recall (γ out, γ in) ∈ S(1)
S ∩ S(1)

P . In particular, γ in /∈ E (1)
S . Therefore, γ in ∈

WF(s)(�
+(1)
P Cf ) ∪ WF(s)(�

+(1)
S Cf ). We argue as before and obtain (51) using

Proposition 5.3 with S(1)
S/P . We now apply Proposition 5.3 with S(2)

S/P and, using

γ in /∈ WF(s)(�
+(2)
S Cf ), we obtain

WF(s)(Cf ) ∩ {t ≤ t (γ out)} ⊂ R+γ in ∪ S(2)
P (R+γ in).

Comparing with (51) we deduce (γ out, γ in) ∈ S(2)
P . Thus we have shownS(1)

P \S̃ ⊂
S(2)

P . Interchanging P (1) with P (2) we obtain

S(1)
P \ S̃ = S(2)

P \ S̃. (54)

It remains to show that (52) and (54) hold with S̃ replaced by the empty set.
Assume (γ out, γ in) ∈ S(1)

S . We use a limit argument to prove (γ out, γ in) ∈ S(2)
S .

First we observe that γ in, γ out /∈ G(2)
S . Suppose not. Then a neighbourhood of

(γ out, γ in) in S(1)
S contains a point which is in (�δ ×E (2)

S )\ S̃ or in (E (2)
S ×�δ)\ S̃ .

This point cannot be inS(2)
S . This contradicts (52). Choose a sequence (γ out

k , γ in
k ) ∈

S(1)
S ∩ S(2)

S , k ∈ N, which converges to (γ out, γ in). Let γk denote the shear wave
bicharacteristic for P (2) with γk(0) = γ in

k and γk(tk) = γ out
k , tk > 0. The length

sequence of the corresponding sequence of geodesics is bounded. By compact-
ness there is a limit geodesic and thus a bicharacteristic γ : [0, T ] → T �(R ×�)

of P (2) with γ (0) = γ in and γ (T ) = γ out. It suffices to show γ (t) lies over the
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interior when 0 < t < T . Suppose we had γ (t∗) above the boundary for some
0 < t∗ < T . Then every neighbourhood of (γ (t∗), γ in) has non-empty intersec-
tion with S(2)

S hence, by (52), also with S(1)
S . This contradicts the continuity of

the map S(1)
S at γ in. Hence we have shown S(1)

S ⊂ S(2)
S . The other inclusions are

proved in the same way.

7. Proof of Lemma 4.3

Let γ = (t, x, τ, ξ|) ∈ �δ \ G. To ease notation we drop the coordinates (t, x).
Recall the definitions of the symbols qS/P (τ, ξ)/ρ = τ 2 − |ξ |2S/P , the metrics

ρ|ξ |2P = ρ|ξ |2S + (λ + µ)|ξ |2, ρ|ξ |2S = µ|ξ |2 + Rξ · ξ , and the characteristics
ξS/P = ξ − zS/P ν, qS/P (τ, ξS/P ) = 0. We have |ν| = 1.

The equation qS(τ, ξ − zν) − qP (τ, ξ − zν) = (λ + µ)(ξ − zν)2 holds for
z ∈ C. It implies ξS · ξP = ξ 2

S/P = 0 if zS = zP . Also it implies qP (τ, ξS) = 0
if ξ 2

S = 0. So if we had ξ 2
S = 0 then zS /∈ R because of the real principal type

property of qSqP . Since Im zS/P ≥ 0 this can only happen if zP = zS . Therefore
ξ 2
S = 0 implies ξS ·ξP = 0. In the same way ξ 2

P = 0 implies ξS ·ξP = 0. Therefore,
it suffices to prove the inequality (38).

Choose 0 < ε ≤ 1/2. ε > 0 will be decreased further depending on L and δ

only. The smallness assumption (6) on the residual stress tensor implies

1 − ε ≤ ρ|η|2S
µ|η|2 ,

ρ|η|2P
(λ + 2µ)|η|2 ≤ 1 + ε if η �= 0. (55)

Consider the elliptic case, γ ∈ ES ⊂ EP . Without loss of generality we assume
ξ · ν = 0. Then ξS · ξP = |ξ |2 + zSzP and |ξ | = |ξ|| ≤ |τ |/δ. (λ + 2µ)/ρ ≤ L2

by (5). Therefore, decreasing ε we assume

ρτ 2 > 2ε(λ + 2µ)|ξ |2 ≥ 2εµ|ξ |2. (56)

z = zS/P is the solution with positive imaginary part of the quadratic equation

|ν|2S/P z2 − 2bz + (|ξ |2S/P − τ 2) = 0 where b = Rξ · ν.

Notice that the signs of the real parts of zS and zP are equal to the sign of b. Hence
zSzP /∈ R and thus ξS · ξP �= 0 if b �= 0. Assume b = 0. We solve the quadratic
equations and then estimate using (55) and (56):

|zSzP |2 = ρ(|ξ |2S − τ 2)

ρ|ν|2S
· ρ(|ξ |2P − τ 2)

ρ|ν|2P
<

(
µ(1 + ε) − 2εµ

)|ξ |2
(1 − ε)µ|ν|2 ·

(
(λ + 2µ)(1 + ε) − 2ε(λ + 2µ)

)|ξ |2
(1 − ε)(λ + 2µ)|ν|2

≤ |ξ |4.
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Hence |ξ |2 + zSzP �= 0, i.e., (38) holds.
In the mixed case, γ ∈ EP ∩HS , we have zS ∈ R and Im zP > 0. This implies

(38).
Consider the hyperbolic case, γ ∈ HP ⊂ HS . Without loss of generality we

assume

〈ξ, ν〉P = 0. (57)

Then the roots z of 0 = τ 2 −|ξ −zν|2P = −|ν|2P z2 −|ξ |2P +τ 2 have opposite signs.
Since qP < qS this is also true for the roots of 0 = τ 2 − |ξ − zν|2S . Furthermore
0 < |zP | < |zS |. Since zS and zP are both forward they have the same sign. For
simplicity we assume 0 < zP < zS . We now derive the estimate

ξS · ξP ≥ |ξ |2 − εzS |ξ | + zSzP . (58)

(λ+ 2µ)ξ · ν +Rξ · ν = 0 is equation (57) restated. From this and (6) we deduce
2|ξ · ν| ≤ ε|ξ |. Hence |(zS + zP )(ξ · ν)| ≤ 2zS |ξ · ν| ≤ εzS |ξ | (58) follows.

The equation qS(τ, ξ − zSν) − qP (τ, ξ − zP ν) = 0 is equivalent to

z2
S(|ν|2S − t2|ν|2P ) − 2zS〈ξ, ν〉S − ((λ + µ)/ρ)|ξ |2 = 0 where t = zP /zS .

(59)

We estimate the root zS of this quadratic equation. Using the Cauchy-Schwarz
inequality and (55) to estimate |ν|S from below we deduce from (59)

|zS |/4 ≤ |ξ |S + |ξ |
√

(λ + µ)/µ if 2t |ν|P ≤ |ν|S .

Decreasing ε > 0 if necessary, we assume εzS ≤ |ξ | if 2t |ν|P ≤ |ν|S . Inserting
this estimate into (58) we get ξS · ξP ≥ zSzP > 0. It remains to prove (38) when
2t |ν|P > |ν|S . From (55) and (5) we get |ν|2P /|ν|2S ≤ 3(λ + 2µ)/µ ≤ 3L2.
Decreasing ε > 0 if necessary, we assume ε2|ν|P ≤ 2|ν|S . Hence 4t > ε2,
ε2z2

S/4 < zSzP . We estimate the right hand side of (58) from below and get
ξS · ξP > (|ξ | − εzS/2)2 ≥ 0.
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